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Accelerated, decelerated, and oscillating fronts in a globally coupled bistable
semiconductor system
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We study front propagation in a globally coupled bistable semiconductor system. The analysis is based on
an activator-inhibitor model derived for a gate-drivpnpn structure that is globally coupled via a gate-
cathode circuit, but the model is applicable for more general cases of a spatially extended system with
Z-shaped bistability. We demonstrate that a global constraint allows for efficient control over the front propa-
gation. In the voltage-driven regime the front propagates with a constant speed whose value and direction are
controlled by the gate potential. Under general gate circuit conditions the front dynamics experiences either a
positive or a negative feedback which acts with adjustable delay. This allows for tuning between accelerated,
decelerated, and oscillating fronf§1063-651X98)12408-X

PACS numbe(s): 05.70.Ln, 72.20.Ht, 85.36.z

[. INTRODUCTION multistable structurefl1]. This makes the control of semi-
conductor systems via a global constraint even more flexible
Solid-state-based bistable or excitable active media wittsince it allows us to arrange global constraints of both acti-
local or global inhibition[1] have attracted much interest in vator and inhibitor types. _ _
recent years. Current instabilities, pattern formation, and T @ bistablepnpn structure is switched from the low-
complex spatiotemporal dynamics have been studied iﬁgﬂdUCthlty to the high-conductivity state, a switching front

semiconductors and semiconductor devi@ss], and espe- triggers double injection from cathode and anode increasing
’ P the concentration of excess carriers up to ten orders of mag-

cially in layered semiconductor structures liken diodes iy de This results in a dramatic increase of both conductiv-
[7.8], heterostructure hot electron diod8,10], resonant iy and light emission providing a basis for numerous elec-
tunneling diodes[11-13, pnp (transistoy structures[4],  trical and optical applications. Originally these applications
pnpn (thyriston structureg14—18, andp™npn n™ struc-  were seen mainly in the field of power electronj&g], but
tures[19-23. There is a high potential of expected applica- nowadayspnpn structures attract attention as a prominent
tions of such active spatially extended media for informationexample of controllable solid-state-based active media which
processing and pattern recognitii,25; this implies spa- can serve as hardware for electri¢aB] and optical[34]
tially inhomogeneous dynamical modes of operation andPattern recognition systems. An implementation of the prin-
therefore the prospects essentially depend on the invention GfP!es of autowave holography for information processing

- : : . 5] demands for controllable distributed media which ex-
efficient methpds for controlling nonlinear spatlotemporalhibi]t both front propagation and solitary pattefi@s]. Mul-
patterns. In this paper we address the problem of global Co'lilayered pnpn structures are promising candidates for
trol over front propagation in bistable extended media, focus'single-crystal realizations of such media. In lagempn

ing on gate-drivenpnpn structures. Bistabl@npn struc-  stryctures control of switching fronts means control of the
tures not only exhibit a great variety of different active area of the semiconductor laser, which could be of
spatiotemporal patterns, e.g., solitary filamef§,16,117, great importance for optical systems.
front propagation[27,18, Turing patterns[14,15,1§, but In this paper we theoretically study the basic features of
also possess unique features with respect to controllabilityfront propagation in @npn structure globally coupled via a
These features are introduced by a spatially distributed migate-cathode circuit. We considerpa pn structure(Fig. 1)
croelectronic gate which allows one to influence the internalvhose design is similar to the single element of a modern
state uniformly over the whole cross section of the deviceyate-turn-off thyristor(e.g.,[32]). It consists of a main cir-
[16,17. In this case, in addition to the global coupling cuit (K-A) connected to a bias voltagd, and a control
through the main circuit, which occurs in all spatially distrib- gjrcuit including an applied voltage,, resistanceR, and
uted semiconductor systerf28—30 and has been studied in external capacitanc€,,,. The structure can be switched on
our previous papej31], a global coupling through the gate or off locally by applying a voltage to one of the lateral gates
circuit ariseq16,17). The external control circuit imposes a G, andG,. For appropriate parameters such local switching
global constraint on the internal dynamics and providegeads to the excitation of a front between high-current and
means for control over spatiotemporal patterns. Recently, agow-current regions moving along thedirection. Our aim is
tive external circuits with negative resistance and capacitp demonstrate that its dynamics can be controlled by means
tance have been implemented in experimental studies ff the spatially extended gaté. The gate-drivenpnpn
structure can be described by the reaction-diffusion equation
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FIG. 1. Sketch of the gate-drivgm" "np*n** structure and the
external circuit. The potential drops between the cath¢ded the
p* layer, the gate&s, and the anod@ are denoted by, u, andU,
respectively(see inset showing a cross section of the strugture
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FIG. 2. The local kinetic functiorf(a,u,U) (dimensionless
The off, intermediate, and on states are denoteéfy a;,;, and
aon, respectively. The values af andU are chosen as=0 and
U=30.75 satisfying the equal areas ryi f(a,u,U)da=0. The
numerical parameters=2x 10°, B=14.5, y=10', k=10 corre-
spond to a realistipnpn structure[26]. All potentialsa, u, andU
are in units ofkT/e.
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du

with a nonlinear local kinetic functiofl6] Tua=uo(t)—u— Rfﬁj(a,u)dx, =RC,
0

f(a,u,U)=—aa+expa— B exp—U+2a)+ yU+ku. C=Cjnt+Cex- (3

)

Here L is the system length along thxedirection, C; is the
differential cathode-gate capacitance of the devitg, has

the meaning of a differential capacitance of the external cir-
cuit. For the current density per unit length between the gate
and the cathode the following Ohmic dependence with con-
ductivity o is assumed:

Herea(x,t),u(t),U(t) are thep-base potential, gate poten-
tial, and cathode-anode voltage, respectively (, and U
are measured in units &T/e and are therefore dimension-
lesg. The characteristic lengthand the coefficients, B, vy,

« of the local kinetic function are determined by the struc-
tural parametergl6], 7, is the characteristic relaxation time
of a. We are interested in the dependence of the internal |n the following we assume thdt and x are measured in
statea(x,t) of the semiconductor structure, assuming it to beunits of 7, andl, respectively {—t/7,, x—x/I), which re-
homogeneous along tlyedirection. Neumann boundary con- duces Eqs(1) and(3) to

ditions are imposed oa(x,t).

j(au=o(u—a). 4

The nonpolynomial local kinetic functiofi(a,u,U), has é=a”+f(a,u,U), (5)
been derived from charge conservation and transport equa-
tions in[16]. The potentials) andU play the role of param- eu=uUp— (1+w)u+ w{a), (6)

eters with respect to the bistable medium. Physically, bista-

bility of a pnpn structure is associated with a change of thewhere the dot and the prime denote the derivatives with re-

central(collecton p* n-junction bias which is negative in the spect tot andx, respectively, and

off state and becomes positive as the structure is switched

on. This local kinetic function combines linear terms, corre- (a)zl fﬁa(x)dx T

sponding to the leakage currentprf junctions which makes L Jo ' Ta

a major contribution to charge transport in the off state, and (7

highly nonlinear exponential terms, corresponding to injec-

tion currents of the collector and emittpin junctions, re- Note thatr has the meaning of total internal resistance of the

spectively[16]. The latter dominate in the on state, but thegate contact. All variables we use in the following are di-

small prefactoiB makes them negligible in the off state. That mensionless.

leads to the sharp rise of the local kinetic functigfig. 2). The null isoclinea(u) of Eq. (5) defined byf(a,u,U)

Since the first term in Eq2) takes into account Ohmic con- =0 is S-shaped for sufficiently large values of the main

ductances of both the gate contact and the emittefp™ voltageU>U,, [Fig. 3@)]. The steady-state current-voltage

junction, whereas the last term contains the latter contribueharacteristig (u)=j(a(u),u) of the gate current which re-

tion only, we generally have > k which is important for the sults from the dependencegu) and j(a,u) is Z-shaped

following analysis. [Fig. 3(b)]. Current-voltage characteristics of this type have
We assume a voltage-controlled main circUit=const  been found recently in the double-barrier resonant-tunneling

and impose one global constraint corresponding to the cordiode (DBRTD) [11]. Note that in contrast to the DBRTD

trol circuit [37]: gate-driven pnpn structures are three-terminal devices
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FIG. 3. (&) Null isoclinea(u) given by the local kinetic function X
f(a,u,U)=0 and (b) Z-shaped local current density vs voltage  FIG. 4. The spatial profiles of the stationary frdetirve 1,u
characteristig (u) for U=30.75 @, u, U, apdjlo are in units of  =0), hot front (curve 2,u=ug/2), and cold front(curve 3,u=
kT/e). The lower brancloff of thea(u) relation corresponds to the —y,/2). The front widthw and the characteristic lengthdefined

upper branch of(u) and vice versa. The holding voltagg and the by Eq. (11) are indicated. The system length£s=1000 (@ andx
threshold voltageu,, denote the left and right boundaries of the are in units ofkT/e andl, respectively.
bistability regime. The inset ife) shows the turning point at;, and

the voltageu,, defined by Eq(29) in an enlarged scale. and the required front solution with

which have aZ-shaped cathode-gate characteristic and an g(X) = 8on,8off  fOr X— —00, 40 ©)
S-shaped cathode-anode characteristic. These different non-

; - ) ) R corresponds to a saddle-to-saddle trajectbwsteroclinic or-
linearities are associated with control and main circuits, re;

. . bit) in the corresponding phase portrait. In this section we
spectively, and .thi subsystem.|s used_to control ﬂ.& will establish the dependence of the front veloaityand the
subsystem. Stationary and moving kinklike patterns in th

DBRTD in the voltage-controlled regime have been studie ront wictth W upon the control potential. . .
in [13]. Up to now the DBRTD remains the most prominent A ge.nerlal expression f,0r the' front vglocny caﬂcbe derlved
example of a semiconductor system which experiences su multiplying Eq.(8) by a; and integrating ovef - dx [1]:
a characteristic. Our main conclusions, however, may be ap- +o(dag(x)|2 |71 aon
plied to more general cases of an extended system with a v=A“ ( ) dx| AEJ f(a,u,U)da.
Z-shaped bistability. dx Aot
The paper is organized as follows. In Sec. Il we study the (10
case of a voltage_-driven co_nt_rol circuit where the swit_ching The front has zero velocity if the equal areas rale 0
front propagates in a self-similar way. Here we estabh.sh a%Z] holds. Without loss of generality we assume that the main
approximate analytlcal dependencg of.the front velocity o oltageU is fixed at the valu&J = U, which is given by the
the control potential and compare it with the results of nu- aon N o .
merical simulations. Section Il is devoted to the effect of aequal areas rUIefaoﬁ f(a,u=0Uc)=0 corresponding to
global constraint on front dynamics. We demonstrate thagero control voltage. Then far=0 the front represents a
this constraint can provide both positive and negative feedstationary kink.
back and allows for tuning between accelerated, decelerated, To further evaluate the dependencéu) we take into
and oscillating fronts. A stability analysis of stationary fronts account the specific features of the local kinetic functi@n
in the presence of a global constraint is performed in théFig. 2) and the resultinga(u) dependencéFig. 3@] and
Appendix. assume: (@) in the intervall a.,a;n] the local kinetic func-
tion is approximately linear and given Hya,u,U)~ — aa
+yU+ku; (b) (Aon—ain) <(@int—aofr), Whereag,, aof,
II. SELF-SIMILAR FRONT PROPAGATION anda,,, denote the on, off, and intermediate stationary states,
Let us consider the case of a voltage-driven control circuifSPectively|(c) ao, anday essentially do not depend on the
u=const first. The dynamics is then governed by E). 9a&te potentialu [Fig. 3@], and ac(u) is given by aq
with fixed external parameters and U in the local kinetic ~ =as+ (k/a)u, whereays=(y/a)U corresponds tai=0.
function f(a,u,U). Therefore a transition from the off state =~ Because of assumptida) Eq. (8) has an explicit solution
into the on statévia a propagatingot frond or from the on  in the interval[ &y ,ain]:
state into the off statévia a propagatingold fron) occurs

— oo

with a constant speed and a self-similar profilea(x,t) Ao(X) =+ (&int— Aotr) XA~ X/L(v)],
=ag(x—vt); it represents the nonequilibrium phase transi-
tion from a metastable state to a stable sf4t88]. Here we 1Y v

i Liv) "=z+ +a. (12)
assumey >0 andv <0 for hot and cold fronts, respectively. 2 4

Front propagation irpnpn structures was first described as ) . )
an autowave in bistable media {27]. In the comoving Here L(v) is a characteristic length governing the front
frame Eq.(5) takes the form width W (see Fig. 4 whose scale is given by 2. Due to

assumptionb) the contribution of the intervdla;,,a,,] to
, , the front width is small. Therefore we can neglect the con-
agtvagtf(ag,u,U)=0 (8)  tribution of the corresponding intervii-,0] on thex axis
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to the integral in Eq(10). (This means that for the interval
[ant,a0n] the second term in E48) can be neglected Ap-

proximating
2 +oo 2
) dX%f ( ) dx
0

[l

and inserting Eq(11) into Eq.(10), by direct calculation we

dag(x)
dx

dag(x)
dx

12

obtain an expression which determines the velocity and thtfaun

width of the front:

v

v2 \V2A
+ _+a:L(U)71:—1
2 4 Aon— A,

on off

(13
where

8on 1
AEJ f(a,u,U)da=A+ 7 a(an— aofr) -

Ajnt

(14

Here we have neglected the difference betwagranda; .
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FIG. 5. (a),(b) Front velocityv and (c) front width W as a
ction of the gate potential for self-similar front propagationy(
andW are normalized by the characteristic veloaiy= \/a and the
width W, of the stationary front ati= 0, respectivelyy is in units

of kT/e). In (b) a part of(a) is shown in an enlarged scale. The
numerical result and the analytical approximation are plotted by
dashed and solid lines, respectively.

v

U2 2 hO
2+ Z+UOZUOF’

Vo= \/;,

(19

where hg=a,,— a, corresponds to the stationary front at

This expression is valid for both hot and cold fronts. With U=0. In order to eliminaté\(0) from Eq.(19) we have taken

increasing absolute value of the front velocity the front
width W decreases or increases for hotX0) or cold @
<0) fronts, respectively.

For slow fronts [v|<a), Eq. (11) givesL *(v)~v/2
+ Va. Equation(13) can be linearized with respectm\/a.
This yields

2A
V== 5
\/E( Aon— aoff)

For fast hot fronts ¢>/a), Eq. (11) yieldsL '~ andA
~A holds. Equation(13) is equivalent to the well-known
expressiori1]

(19

V2A

_— 16
Qon— Aoff ( )

V=

originally derived in[39] for combustion fronts. For fast cold
fronts (v<O0, |v|>Ja, |A|>A) linearization of Eq.(13)
with respect toJa/|v| leads to the formula

Al

A (17

vV=—

which is specific for the local kinetic functiof®).
We shall now use Eql13) to determine the dependence
v(u). The dependence d uponu,

A(u)=A(0)+ k(agn—apu, (18)

1 2 2
A(0)=expag,—expa— 5 a(ag,—ap)

2
+ a(@on— Qiny) Aoff »

is weak due toay,—a<aogn—acs- Assuming A(u)

~A(0) we conclude that the front velocity is mainly deter-

mined by the front contrast=a,,—ay:

into account thab =0 for h=h,. Equation(19) determines
the dependence of the front velocity on front contegdt) in
an implicit form. The characteristic speeg sets the scale of
the front velocity.

Now let us derive the(u) dependence. Taking into ac-

count assumption(c) [aqs=a+ (k/@)u and a,,~consi
v

we obtain
2 , ul -t
2+ Z+v0=vo 1-— ,

whereu.=(a/k)hy corresponds to the point where the ex-
trapolated off branch intersects the on branch of &lta)
characteristic[Fig. 3(a@)]. Since u, exceeds the threshold
voltageuy, Eq. (20) is valid only within the bistability regime
u<uy,. For small values ofi thev (u) dependence is given
explicitly by

(20

u
v(u)=200u— for |v|<vg. (21
cr

In Figs. 5a) and 3b) the front velocityv (u) given by Eq.
(20) (solid line) is compared with the dependence obtained
from direct numerical simulations of the front propagation
(dashed ling There is good agreement in the intervgl2
<u<uy,. The significant discrepancy far,<u<<ug/2 re-
sults from the violation of the assumptidn(u)~A(0) for
fast cold fronts. The threshold point, and uy, correspond
to the degenerate situations where the metastableagjate
a., respectively, merge with the unstable statg. The
corresponding velocities(uy,) andv(uy,) are maximum ve-
locities of cold and hot fronts, respectively. Numerical simu-
lations show thatdv (u)/du|=« atu=u,, uy which is not
predicted by Eqg.20). However, we conclude that in the
most interesting range of control parametergqg. (20) de-
scribes the velocity of both hot and cold fronts within good
accuracy. According to Eq$13) and(20) the front widthw
is proportional to the deviation of the control potential from
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u FIG. 7. Different regimes of the load linéa) The slope of the
null isocline(22) of the control voltage: in the ((a),u) phase plane
FIG. 6. The phase flow in the(4),u) plane for self-similar  for different values ofw (load resistange The sectors correspond-
front propagation in the voltage-driven regime. The thick solid lineing to >0, —1<w<0, andw<—1 are marked by arrows on the
shows the null isoclin@(u) of spatially uniform solutiongcf. Fig. circular boundary. The dotted lines separating these different re-
3(a)]. The thin solid line au=0 represents a branch of stationary gimes correspond to the respective null isoclifas=u+ constg
fronts for £>W:; the dashed line corresponds to stationary fronts=*%), (a)=Ug(w=—1), andu=uy(w=0). Note that for a fixed
for finite system size £=2W,). (a andu are in units ofkT/e.) value ofw a null isocline may be shifted vertically by changing.
The thick solid lines show the spatially homogeneous steady-state
characteristic(b) The corresponding position of the load line with

the critical valueu,,: W~ (ug—Uu). This prediction is also © Pad
respect to theZ-shaped current-voltage characteristic in theu)

confirmed by numerical simulations for the interval/2
y vay phase plane. The inclined dotted line is parallel to the lowesk

<u<ug [Fig. 5(c)]. ’ > P
In the ((a),u) phase plane the trajectories correspondingbranCh of the current-voltage characteristic.

to the self-similar front propagation are represented by

straight vertical arrowgFig. 6). The phase flow is directed load line, should intersect both the on and off branches of the
up towards the on statbot front9 and down towards the off spatially homogeneousa(u) dependence given by
state (cold front9 for u>0 andu<0, respectively. Forl f(a,u,U)=0. We distinguish three different situations

>W the lineu= 0 corresponds to =0 (stationary kinks In >0, —1<w<0, and w<—1 where the null isocline has
finite-size systems the branch of stationary kinks slightly depositive, negative, and again positive slope, respectively.
viates from the vertical direction in such a way that) These null isoclines and the corresponding positions of the
decreases as increases. That leads to the instability of sta-load line with respect to th&-shaped current-voltage char-
tionary kinks with respect to infinitesimal fluctuations in the acteristic are shown in Fig. 7. Far<0 the load resistande
current-controlled regime. The detailed stability analysis ofis negative. This can be achieved by implementation of an
stationary kinks in the presence of a global constraint igctive external circuif1l]. The total resistivity of the gate

given in the Appendix. circuit (R+r) is positive for —1<»<0 and negative for
w<-—1. Foro=0 andw=« we have voltage- and current-
IIl. GLOBALLY COUPLED DYNAMICS controlled conditions, respectively. ACCOfding to Ea) for
OF ERONT PROPAGATION fixed (a) the variableu tends to the quasistationary value
given implicitly by Eq.(22) for €>0 if o>—1 and fore
A. Regimes of the load line <0 if w<—1. In this case the null isoclin€2?2) attracts

Generally, the average valu@) depends on the front trajectories in the{a),u) plane. In the opposite case of re-
positionw and due to the global constraint the control pa-Pulsion the dynamics of our model becomes unbounded.
rameteru changes as the front propagates. That leads to a®hysically, the case of repulsion corresponds to the regimes

celeration or deceleration of the front motion. We shall dis-0f homogeneous oscillations induced by negative external
cuss this in the (@),u) phase plane. The null isocline resistancdRk which are of no interest with respect to the front

corresponding to Eq6) is given by propagation. It should be noted that in order to exclude such
oscillations for —1<w<0 one should provide a negative
1+ w Ug capacitanceC<0 as well (see [11,40,31), whence e
(a)=——u-- (22 =Rrg/r,>0.

It is equivalent to thdoad line ) ) )
B. Reduction of the equations of motion
(j>=z(u —u)= Up—u 23 An analytical insight into nonlocal dynamics can be
w0 RL achieved by a reduction of the equations of motiby (6).
Let us parametrize a propagating front by its positioft)

in the ((j),u) plane, observing Eq(4). The intersection and its contrash(t)=a,,—ay(t). Since in large systems
points of the load line with the steady-state characteristithe relaxation of the front shape is fast compared to the front
(a(u)) [resulting from a”+f(a,u,U)=0] determine the motion, the front dynamics can be described by ordinary
fixed points of the system. Fdristableregimes which are differential equations for these reduced order parameters
relevant for front propagation the null isoclif2?), i.e., the [41], together with the global constraint:
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w=o(h) (24) for Eq. (28). Taking into account Eq(29 and a,,— ajn
’ <@y, a0 We conclude that the following four combina-
h=a(he—h)— xu, (25) tions of signs ofA, B, (u,—u,) are possible:
. w (A>0,B>0,u,—u,>0)
eu=Up— (1+w)u+w| a,,—h+h Z) (26)
o
for >0 and for o<———, (31
Equation(24) determines the front velocity according to Eq. @K
(19). Equation(25) describes the relaxation of the front con-
trast. As in our modeh,,,= const this relaxation is related to (A<0,B>0,uq—u,>0)  for —1<w<0, (32
the relaxation of the homogeneous off state only and there-
fore Eq. (25) follows directly from Eq.(5). Equation(26) (A>0,B<0, ug—Uus>0)
represents the global constraif® where(a) is expressed
throughw andh. The contribution of the front wall tda) is for — a cwc—1 i U>(14 "
neglected. Followind41] we refer to Eqs(24)—(26) as to o~ e« If Up>(1+ @)Uert @Bon,
reduction (i) (33
Further simplification of the equations of motion can be
achieved if the relaxation of the contrdsis fast compared (A>0,B<0, Uug—U,a<0)
to the front propagation. It follows from Ed24) that the
time scale forh is 1. The time scale fow refers to the o ]
time it takes for the front to advance by its own widt# for ———<w<-1 if Ug<(1+w)Uyt+wap.
Taking into account that the characteristic front width is (34)

a2 we arrive at the conditiofv|<vy= \a. Therefore we

can expect that for sufficiently low velocities the variahle Standard phase portrait analysis in thelf) plane shows

in the dynamical systeni24)—(26) can be considered as a that the variablé rapidly relaxes to the null isocling0) for
fast variable. Generally, that might result either in a situatiorthe case$31)—(33). This implies that asymptotically all mo-
where this variable can tediabatically eliminatedthe con-  tion occurs along the null isoclin€80). For case(34) the
trasth(t) is close to that of the quasistationary front corre-component of the phase flow related to the variahle
sponding to the instantaneous valueudfor in a situation changes its direction and the null isoclif®0) does not at-
wherefast motionrelated to this variable dominates the dy- tract the phase flow anymore. The fixed point corresponding
namics of the other variables. In order to check whether sucto a stationary front is a saddle point and the null isocline
fast motion occurs in our system let us consider redudiipn (30) closely approximates the stable manifold of this fixed

for e<a~ ! when there is no delay in the response of thepoint. Fast dynamics of the variabte driving the system

control potential to the momentary value(@f). Then elimi-
nating u adiabatically, we arrive at what will be called-
duction (ii):

Wzv(h), (27)
) w
h=K<(ucr—ua)—Bh—AhZ , (28
where
o Ug A= w B_a w
LS|t L) AT PR T
(29

The potential, corresponds to the point where the load line
intersects the on branch of tlagu) characteristic. The null
isocline (22) in the ((a),u) plane (Fig. 7) has positive or
negative slope foA>0 or A<O, respectively. The param-
eterB controls the slope of the null isoclin@2) relative to

the slope of the off branchy;(u) =a.s+ (x/a)u. (Note that
due toa/x>1 the latter slope never exceeds unity.

The null isoclines in thel{,w) phase plane are explicitly
given byh=h, for Eq. (27) and

Uer— Uy

h=2 (W/L)+B

(30

away from this manifold is expected in this case. The case
(34) corresponds to a specific position of the load 1{28)
where it has one intersection with the off branch of the
current-voltage characteristic within the bistable region and
another intersection with the on branchugt>u.,. We will
discuss the front dynamics for this regime in detail in Sec.
I F.

The analysis above indicates that the variablean be
adiabatically eliminated in all regimes of global coupling
except for cas€34). Since the contradi(t) is close to that
of the quasistationary front corresponding to the instanta-
neous value ofi the front velocity is determined by the value
of u and we can use the dependel(2@) instead of Eq(19).

In this case reductior(i) results in the following two-
component moddlreferred to aseduction (iii)]
w=u(u), (35
Uy—Uu
A

K

1 w
al™ L

Herev(u) is the velocity of a quasistationary propagating
front for the control voltagas, andh(u)=hy—(«x/a)u has
been taken into account.

In the following we compare the predictions of the reduc-
tions (i) and (iii) with the results of numerical simulations of
the full model(5), (6).

eu=w (Ug—u) (36)
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C. Feedback on front dynamlc§ for different types a)zoq/_SS,/{ b) 1/ C)o.02 y
of global coupling yys ity oot/ /1;/
; ; ; : 01 Fy O 3 3
In this subsection we discuss the different types of feed-<a-| 447/ S © ==
back upon front dynamics occurring for different regimes of 2o /2~ ° BN AN YRR 2

the load line. First let us use reducti6ii) and consider the "~ - o | ool
additional assumptioa< «~ ! where there is no delay in the
response of the control potentiako the front position. Then
Eq. (36) directly determines the instantaneous dependence ¢
u on the front positionw. Substituting this dependence into
Eq. (200 we obtain the following dependence of the front
velocity v on the front positiorw:

v vt Ugr w
—+ —+UO:UO A—+B
2 4 U,—Uu L

cr a

il

\

W

K

—. (37

a

FIG. 8. Propagation of accelerated fronts in the case of positive
[The same result follows from reductidii) by substituting feedbackw>0 (R>0). (a) Phase trajectories in thég),u) plane
Eq. (30) into Eq. (19).] Equation(37) allows one to under- (solid lines with arrows The thick solid lines show the spatially
stand what kind of feedback occurs for different slopes of thehomogeneous steady-state characteristics. Numerical simulations
null isocline. It is readily seen that the type of feedback isare shown for three different load lingdotted corresponding to
governed by the sign of the produét (u,— u,)A. Foru, =100 (nearly current controlledand uy,= 200, — 1500, — 3200.
<u, we get sgro=sgnA, and the feedback is positive or Two different values oe=RC/7, are usede= 1079 (trajectories
negative for positive or negative slope of the null isocline, 12,3 ande=5x10"° (trajectories 1,2',3'4'). Slightly differ-
respectively, i.e., the front velocity increases or decreases, €Nt initial conditions are employed for trajectories 2ghd 3,3,
respectively, with increasing(t). For u,>u,, the reverse rgspectlvely(b) .Front.velocnyv normalized by asa fur?ctllon of
holds. The front propagates with acceleration and deceler ime for the trajectories presented (&). (c) Relative deviation of

tion for >0 and <0, respectively. According to Eq37) t_ e front contra_lst frqm its quaS|sta_t|0nary valuas a functl'on of
: X - time for the trajectories presented(@. (d) Temporal evolution of
for |v|<v, or v>v, the front velocityv increases linearly

ith the f o, hich indi h ial the accelerated hot front corresponding to trajectorg)lTemporal
with the front positionw whic ' n Icates the exponential o, ion of the accelerated cold front corresponding to trajectory 4.
character of the front propagation.

- U . Note that the orientation of axes i) and (e) has been chosen
In the 0ppo§1te limit case of slow relaxation of the control iterently for better visualization. Numerical parameters as in Fig.
potentiale> ™~ the front propagates with a constant speedz (a,u are in units ofkT/e, x andt in units of| and 7., respec-

given by the initial value ofi for any global constraint. tively.)
In order to understand the front dynamics for intermediate
values ofe, as well as to study the limits of the reduced
two-component mode(35), (36), we have performed nu-
merical simulations of the full modé€b), (6). Obviously, the
analysis of front propagation requires specific initial condi-
tions. We assume that the initial distributian(x) is a step-
like pattern: a;(x) =ao, for x<x;; aj(x)=au(u;) for x
>X;, wherex; andu; are initial front position and initial gate
voltage, respectively. In the absence of global constraint
such a steplike pattern is known to evolve exponentially fast_ . ) . !
into a smgoth F13ront profile traveling at conr')stant velgcity rajectory 4 belongs to a Ioad. line with lower,<0; it
[38,42,43. In the following we focus only on regimes which corrgspgnds to a cold fror'1t starting close to the orlstate and
are associated with front propagation and assume that tfgding in the off statqFig. 8e)]. In the case ofay<
initial point ((a;(x)),u;) is located sufficiently close to the (—Uo/®)<aon [the middle load line in Fig. @] there is an
null isocline. Physically, different initial conditions can be intersection point of the load linénull isocling with the

front. Numerical simulations of the full modéb), (6) are
shown in Fig. 8 for three different positions of the load line
[dotted in Fig. 8a)] and different initial conditions. The front
velocity v and the relative deviation of the contrast from its
quasistationary valud are shown as a function of time in
Figs. 8b) and 8c), respectively. Trajectory 1up>0) cor-
gesponds to an accelerated hot front starting close to the off
tate and ending in the homogeneous on dtatg. 8d)].

realized by means of the lateral gat@s,G,. branch of stationary fronts at=0. This point corresponds to
of global constraints in detail. Appendi¥ indicates a saddle-type instability of this kink so-

lution for w>0, €>0. Accelerated hoty(>0) and cold ¢

<0) fronts predicted by Eq(37) for a,<(—Uy/w)<ag,

represent motion along the unstable manifolds of this saddle
In the case of positive load resistanRe(w>0) the pa- point [trajectories 2 and 3, respectively, in Figag. The

rametersA andB are always positiveB>0 means that the feedback is most efficient for the current-controlled regime

slope of the null isoclind22) is larger than that of the off (w>1) in the control circuit. An increase &f as it occurs

branch of thea(u) characteristic. Therefora,<ug holds  with an increase of the capacitan€eesults in a delay of the

for any null isocline which intersects both the on and the offcontrol potential response upon the front position and there-

branch of thea(u) characteristifsee Eq(31)]. Accordingto fore the front acceleration is diminishefirajectories

Eq. (37) we have positive feedback and acceleration of thel’,2’,3',4’ in Fig. 8a)]. For large values o€ we return to

D. Positive feedback(w>0)
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a) % ~ £ and 3. Stability of the stationary kink foe>0 is given by
20 2\ ! T the criterion(A8), which can be approximately represented
10 4 \3 :5\{3\\ as
<a>0 kd /:;\;; _
> [
o A e —lt e <w<-— M (39)
-40 20 0 20 40 [¢] 25 50 75 K
b) ®e= u — t
2 2\ T where\ ;>0 is the eigenvalue of the only unstable eigen-
IR I RN “ s s mode related to the kink solutioisee the Appendix Since
0 S e N1<<1 for £L>W, this criterion is close to-1<w<O0 for
10 05f 4 small . If w lies in the interval given by Eq.38), the fixed
40 20 0 20 4 o 75 10 28 point corresponding to the stationary kink is a stable node or
30— . stable focus foe>0. In the first case, the slowing down of a
c) ol T I 3 1P 001 _Aﬂi‘ front is monotonid Fig. Ya)], in the second case we find an
volal 2L ”@"? * L “MW oscillatory slowing dowriFig. (b)]. The lower bound of the
@l L/ s T ”HJ criterion (38) corresponds to an oscillatory instability: for
o o 001 'M o<—1+ €\, the fixed point is an unstable focus. This in-

u

-40 20 -05 0 05 20 40

0

2000 4000 6000
1

stability results in growing oscillations of the front position
[Fig. 9c), trajectory §. The amplitude of these oscillations

o ) increases monotonically. We have never observed limit-
FIG. 9. Front propagation in the case of negative feedback.ycje gscillations of the front position in our numerical simu-
—1<0<0 (-r<R<0). Numerical simulations are shown for |4ions  Eventually the front reaches the boundary. Starting
three different load lineg¢dotted corresponding tav=—0.5 and from this point the system remains in the subspace of spa-
Z;FTzho (trajeftory j:% Uo=8 (tgj_‘(je)moiiel%,zl’ls’)(sb?o:_olét,rgaje(cgory tially homogeneous solutions and its dynamics depends on
:'10‘g.eih\;algfisc;ur:r:esﬁzsvs't?meep:hase tr'aject;r_ies i lﬂg(u; whether the null isocline intersects the on or off branch of
' the a(u) characteristic. If it does, the system eventually ap-

plane. Throughouta),(b),(c), trajectories labeled with the same - - )
number are calculated with the same load lines and the same initiziﬂroaChes the nearest homogeneous fixed point as shown in

conditions. Trajectory 5 ific) corresponding to an oscillatory insta- F19- c) (curve 5. Otherwise the front oscillations evolve
bility of the stationary front is calculated with=—0.95. Note that Nt homogeneous oscillations. The oscillatory instability of
in (c) the scale on ther axis has been expanded in the interval @ stationary front originates from the attraction of a front by
[-0.5,0.5 in order to make these oscillations visible. The centerthe boundarie§31] that takes place in the voltage-controlled
column shows the front velocity normalized byv, as a function ~ regimeu=const and is reflected by the positiveness of the
of time. The right column shows the temporal evolution of fronts: eigenvalue\,. Note that\,; decreases exponentially with
(@ monotonic andb) oscillatory slowing down of the front propa- system size£ and in an infinite system;=0 due to the
gation corresponding to trajectory &) growing oscillation corre-  translation invariance. Therefore the oscillatory instability
sponding to trajectory 5.a(u are in units ofkT/e, x andt in units  essentially represents a boundary effect which is not typical
of I 'and ,, respectively. for fronts on large spatial domains. The deviation of the front
contrasth from its quasistationary value is small for all re-
the case of self-similar front propagation with a constangimes. However, since reductiofiii) does not include
speed since does not change appreciably. The deviation Ofbo_undary eff_ects it cannot describe the oscillatory instability
the actual front contragt(t) from the quasistationary value LF19- (), trajectory §.
h(u(t)) corresponding to the instantaneous value & neg-
ligible [Fig. 8(c)]. This justifies reductiofiii ) in that particu-
lar case. The agreement with the full mod®g), (6) is very
good.

F. Indeterminate feedback(w<—1)

For w<—1 the slope of the null isoclin€22) becomes
positive again A>0). In this situation we should compare it
with the slopex/a of the off branch of thea(u) character-
istic distinguishing between the situatidd>0 and B<<0
(Fig. 10. ForB>0 [see Eq(31)] the null isocline(load line

The case— 1<w<0 corresponds to a negative externalintersects both the on and the off branch of #fe) charac-
resistanceR<<0 whose absolute value does not exceed thderistic (Fig. 10, curve ], u,<ug, holds, and the system dy-
internal resistance so that the total resistance of the gate namics is qualitatively the same as for the positive lead
contact and external load remains positive. Here we have & 0: The feedback is positive and the fronts propagate with
negative slope of the null isocline<0, andB>0, u,<u,,  acceleration. If the load line intersects the stationary kink
holds[see Eq.(32)]. Due to 5§<0 the feedback is negative solution atu=0 this kink exhibits a saddle-type instability if
and fronts propagate with deceleratidfig. 9(a)]. The final €<0 (see the Appendjx The only difference between the
state depends on the particular position of the null isoclineeasesw>0 andw< —1 is that the sign oE=RC/ , should
(22). For —ug/w>a.,and—uy/ w<ayg the final state is the be reversed in the latter case, but @r0 this occurs auto-
on and off state, respectivelyrajectories 1 and 4, respec- matically if R changes sign. This qualitative similarity be-
tively). For a,<(—Uuq/w)<ag,, the system eventually ap- comes a quantitative one for the current-controlled regime
proaches the stationary kink patternwat 0 (trajectories 2 |w|>1: For a heavily loaded circuit the sign of the external

E. Negative feedback(—1<w<0)
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<a>, ;
,//IV
2 il —
Ty or Ua

FIG. 10. Possible positions of the load lifdotted in the
({(a),u) phase plane fow<—1. Line 1 corresponds tB>0, lines
2 and 3 toB<0. The arrows denote unstalflmes 1, 3 and stable
(line 2) manifolds of the saddle point corresponding to the station-
ary kink. The thick solid lines show the spatially homogeneous
steady-state characteristics. The intersection point of the load line FIG. 11. Front propagation in the case of indeterminate feed-
with the on state () is marked for the null isocline 2 only. back w<—1 (R<-—r). Numerical simulations are shown for a

load line corresponding t@=—1.1 anduy=18 (u,>u., B<0).

resistance does not play a role if the polarity of the voltagga) Phase portrait. The null isoclinéotted intersects the off
source is chosen appropriately. branch of thea(u) characteristidsolid ling). Trajectories 1(stable

For B<O [~ al/(a— k)<w<—1] the slope of the null kink mode and 2 (unstable kink modeare calculated fore=
isocline is smaller than that of the off branch. If the null —107*2 Trajectory 3 corresponds to the same initial condition
isocline intersects the stationary kink solutionuat0, two ~ as 2 bute=—5x10*°. (b) Relative deviatiomAh of the actual
cases are possible: there is a further intersection either witfiont contrast from its quasistationary valbefor trajectories 1,2,3
the off branch of thea(u) characteristic at &u<u,, (Fig. (normalized toh). (c) Temporal evolution of the decelerated
10, curve 2, or with the on branch onlyFig. 10, curve B hot front corr_esponding to trajectory(?.tablt_a kink moo_l)a (d) Tem-
[Curves 2 and 3 correspond to the caé®$ and (33), re- poral e\{olutlon of the front correspo_ndlng to trajectory(n-
spectivelyl. Since there is no intersection far0, the sys- stable kink mod}a. (e Temppral evolution of thg accelerated. hot
tem dynamics may become unbounded, i.e., unphysical, fdfo"t corresponding to trajectory 8unstable kink mode with
u<0, therefore in the following we restrict our consideration €~ —5x10 ). (a,u are in units okT/e, x andt in units ofl and
to U>0. Ta, respectively.

For B<0 andu,<uc, the null isocline intersects the on
branch only. Sinces=(u,—u,)A>0 we expect positive essential difference of the unstable kink mode from the
feedback. Foru>0 the system dynamics is qualitatively stable kink mode is a significant deviation of the actual con-
similar to the casé8>0. In particular, a stationary kink at trast h(t) from its quasistationary valua(u(t)) [see Fig.
u=0 experiences a saddle-type instability o0 and the 11(b)]. The variabléh cannot be adiabatically eliminated and
accelerated front predicted by reducti@in) corresponds to reduction(iii) fails in this case. This confirms our analysis
motion along the unstable manifold of the saddle point up taelated to reductiorii) in Sec. Il B. An analytical descrip-
the stable on statéig. 10, curve 3 ForB<0 andu, suf-  tion of the unstable kink mode can be obtained only on the
ficiently larger tharu,, the null isocline first intersects the off basis of reduction§) or (ii) which treat the front contrast as
branch of thea(u) characteristic and further on also the on an independent variable. This type of feedback is very sen-
state (Fig. 10, curve 2 implying §=(u,—UuUy,)A<0 and sitive to the initial conditions. Generally, the stable or un-
negative feedback. This situation corresponds to the casstable kink mode is favored if the initial conditigm;(x))
(34) where fast motion related to the varialilés expected. lies above or below the null isoclin@2), respectively.
Here we meet aew situationin the ((a),u) phase plane The stable and unstable kink modes correspond to decel-
because the decelerated front predicted by reduc¢iiorand  erated[Fig. 11(c)] and accelerate@Fig. 11(d)] fronts, re-
tending to the stationary kink pattern at=0 now corre- spectively. However, since the unstable kink mode is trig-
sponds to motion along the stable manifold of the saddlgered by the fast dynamics of the front conttasthe motion
point. Decelerated fronts have indeed been found numerisf the front wall is negligible, and the fast change of the
cally as solutions of the full systertb), (6) for carefully  contrast makes the major contribution to the dynamicsapf
chosen initial conditions. The corresponding trajectory in thethus driving the system rapidly towards the homogeneous on
({(a),u) plane closely follows the null isoclin@2) in such a  state[Fig. 11(d)]. This is consistent with the observation that
way thatu decreases up to the stationary kink stefgg.  the homogeneous off state is now unstable. With increasing
11(a), curve 1. In the following we refer to this solution as | the unstable kink mode becomes more similar to a well-
to thestable kink modeHowever, numerical simulations re- pronounced accelerated frofftig. 11(a), curve 3 and Fig.
veal also the possibility of a qualitatively different motion 11(e)]. For the same values efthe stable kink mode cannot
where the trajectory runs in the opposite directianstable be excited anymore: the same initial conditions as in Fig.
kink modé until it reaches the stable on stdteig. 11(a), 11(c) give rise to a mixed motion which starts like a decel-
curve 4 [45]. Note that the phase portrait in Fig.(8lis a  erated front but eventually develops into an accelerated one.
projection of a high-dimensional space, and trajectory 2 nee@hat means that reductigiii) becomes completely obsolete
not be close to trajectory 1 in this larger phase space. Theith increasinge.
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IV. CONCLUSIONS Our analysis is applicable to general spatially extended
semiconductor systems with Z-shaped current-voltage
. ; ) characteristic including such quantum devices as the double
driven semiconductor structure. The system is globallyjya ier resonant tunneling diodé1—13. Self-sustained os-
coupled via a gate-cathode circuit which exhibig-ahaped  gjjations of the front position in the DBRTD have been
blstable' current—yoltqge .c.har.acterlstlc. The CathOde'a”Odt?leoretically predicted if12] for the case of a resonafsec-
voltage in the main circuit is fixed and serves as an externalng ordey external circuit. The analysis {i12] is based on a
parameter which controls the gIObaI level of excitation. Thes|mp||f|ed model and assumes that the oscillation Cyc|e con-
type of global constraint and the relaxation timgassoci-  sists of two consecutive stages: front propagation leading to
ated with the global constraint are governed by the load rethe homogeneous state, and subsequent circuit-induced re-
sistanceR and the external capacitanCy,;, respectively. laxation of the voltage. During the second stage the device is
We have shown that it is possible to arrange either posiassumed to be in a homogeneous state. However, it remains
tive or negative feedback upon the front dynamics by globalinclear how the kink pattern can emerge again from the ho-
coupling. ForR>0 the feedback is always positive and both mogeneous state after the second stage of the oscillation
hot and cold fronts propagate with acceleratigfig. 8.  cycle has been completed. Our present analysis provides a
They effect a nonequilibrium phase transition to the homothorough understanding of pattern formation in the DBRTD
geneous on or off state, respective'y_ A negative externdpr a I’ealiStiC.f.iI’St order external circuit and Neumann
load R<0 can be introduced by applying an active externalPoundary conditions. _
circuit. In this case the type of constraint essentially depends NOte that the gate-driverpnpn structure is a three-
on the relation between the external load and the resistandg'minal device which has -shaped cathode-gate current
of the gate contaat. For R+r>0 the feedback is negative Voltage characteristic and eBrshaped cathode-anode char-
and the front propagates with deceleration. In order to keegCteristic. Generally, such systems should be treated as a
the relaxation timer, positive and prevent circuit-induced Pistable medium with two global constraints associated with
spatially homogeneous relaxation oscillations one should@n and control circuit, respectively, with different nonlin-
provide also a negative external capacitance in this case. B§aities. In this paper we have shown that for positive load
appropriate choice of the bias voltagg in the control cir- the gat_e CII’C!.II'[ provides a positive feedback upon the fro_nt
cuit the global constraint can always be tuned such that thdynamics. Itis well known that the feedback associated with
decelerated front eventually ends up in a stable stationar}he main circuit is negative. In future work we will study the
kink pattern[Fig. 9a)]. With increasingr, this fixed point is ront _dynamlcs taking bot_h constraints into account and em-
transformed from a stable nodEig. Aa)] to a stable focus Phasizing the effects which occur due to the interplay be-
and the transients take on the form of damped front oscillalV€€n positive and negative feedback.
tions[Fig. 9b)]. Further increase of, leads to an oscillatory Our analysis also touches upon some general aspects of
instability [Fig. 9(c)]. The critical value ofr, where the sta- front propagation in globally coupled bistable systems. Glo-

tionary front becomes unstable for any slope of the load lind@ coupling has been widely recognized as an important
in the interval—r <R<0 is given byr,~7,/\;, wherex, factor which influences and even determines spatiotemporal

is the eigenvalue of the unstable translation mode related gynamics in extended systems of different nats—
the stationary kink. The front oscillates with growing ampli- S0:41,44,46,4] In particular, accelerated front motion has

tude and, as it reaches the boundary, the system switches E@en found in electrochemical systeAg]. One of the main

the homogeneous mode. Limit-cycle oscillations of the front1Ndings of our analysis reveals that there are regimes where

position, similar to those obtained [#4] for the ballast re- the type of feedback by the global constraint is indetermi-
nate, and both accelerated and decelerated front propagation

sistor, do not occur in our model. It is essential that the 3 i ‘
iving the system to different final states becomes possible

system remains in a homogeneous state—steady AN .
oscillatory—as far as boundary conditiongetermined by for close-by initial values of the front position and the exter-
nal control parameters.

the lateral gate$s,,G,) and global constraint remain un-
changed.

All regimes discussed abov@xcept for the oscillatory
instability of a stationary front in the case of negative feed- e are grateful to U. Ebert for enlightening discussions
back can be described by a reduced two-component modejn, front propagation into unstable states. P.R. acknowledges

which treats the front positiow and the gate voltage as  financial support from the Alexander von Humboldt Founda-
dynamical variables and assumes that relaxation of the frontgon.

contrast and front shape occurs fast compared to the front

motion. However, this model fails fdR+r<<0 where both APPENDIX

positive and negative feedback upon front dynamics become - . ]

possible depending on the position of the load line with re- Let us study the stability of a stationary kirf(x), Uo)
spect to the current-voltage characteristic. Qualitatively difin the presence of a global constraint. Linearization of Egs.
ferent modes, such as accelerated and decelerated fronts, ¢&h and (6) with respect to small perturbations' 5a(x)

be excited for very close-by initial conditions. Whereas de-=2a(X,t) —ao(x), e‘éu=u(t) —u, yields
celerated fronts are predicted by the two-component reduced P
model, the description of accelerated fronts requires at least g 5a= |3|N(sa+ KkduU, HNEA +d(x), D(X)=—
reduced model which treats the front contrast as an indepen- ag,Ug
dent dynamical variable. (A1)

In this paper we have studied front propagation in a gate

ACKNOWLEDGMENTS
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€Z0u=—(1+ w)Su+ w(3a). (A2)

o :r_l <\I’m>2
d A

m

1+ kD ) . (AB)
The stationary solution is stable if ReZ0 for all eigenval- m
ues{. _
We denote the eigenfunctions and eigenvalues of the selfPU€ ©0A1<|\;| and|(W1)[>|(W¥;)] for i>1 we neglect all

. ~ . terms except for the first one in the sums in E¢4) and
adjoint operatorty by ¥i(x) and \;, respectively. They (AB). Then the characteristic equatiéh4) takes the form
correspond to the voltage-driven cagesconst. The first
(ground-state eigenmode¥ ; is strictly positive and corre- ) ~ ~
sponds to a shift of the kink wall. For an infinite system €5 T {(1tw—€ek)—Ni(1+wog)=0, og=aqr.
(L=w=) it is given by the Goldstone mod#,=day/dx, (A7)
and it follows from translation invariance that=0. For
finite-size system&; becomes positive due to the attractive
action of the boundaries on the kink wall, but all other ei-

From Eq.(A7) we get the following stability criteria:

genvalues remain negatii@,31]: A;>0, \;<0 for i>1. —l+eN<w<-—o4" if €0, (A8)
However, the value of ; decreases exponentially if the ratio
LIW increases and therefore in sufficiently large systems the ~oil<w<—1+e\; if e<O. (A9)

stationary front has quasineutral stability. In order to study

the front stability in the presence of a global constraint we . ~ . .
expand the eigenmod@a(x) in the basig{V¥;}: According to EQ.(A6) aq~ /A, which means that the dif-
ferential conductance of a stationary kink is positive and

large: 4> 1. Therefore neither Eq(A8) nor Eq. (A9) are
met for >0. For >0, >0 the fixed point is a saddle
point, for >0, €<O0 it is an unstable focus or unstable
From Eg.(Al) we obtain the coefficients of the expansion node. Sincerg>1 we also conclude that the criterioh9) is
(A3). Substituting Eq(A3) into Eq. (A2) results in the fol-  never satisfied fow<0: for w<0, e<0 the fixed point is a
lowing characteristic equation: saddle point or, in the narrow intervaloy '<w<0, an un-
(W )2 stable node. Stabilization becomes possible only in the case
F(O)=1+w+el—wk, _’; =0, (A4)  (A8)if €>0 andw<O.
mo A For smalle and L>W (i.e., \q, }d’l—>0) this criterion
which determines the complex eigenvalugsf the linear- takes the approximate form-1<w<0 which coincides
ized systemAl), (A2). with the condition of negative slope of the null isocli(22)
The differential conductivity of the kink state of the global constraintFig. 7). The upper and lower bounds
cations, respectively. It should be noted that in the qase
0d= du (AS) <0 the load resistancR is negative, and in order to keep
is connected with the eigenvalugs and eigenfunction®, This is generally necessary to eliminate oscillations induced
by by a negative external loa@ee[11,31,4Q).

sa(x)= >, (saVy¥,,. (A3)

m

of condition(A8) correspond to saddle-node and Hopf bifur-
L d(j@(u),u)) Jj Jj da
7 an A/ M\ du
e=RC/ 7, positive a negative capacitan€e<O0 is required.
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