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Accelerated, decelerated, and oscillating fronts in a globally coupled bistable
semiconductor system

M. Meixner, P. Rodin,* and E. Scho¨ll
Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany

~Received 31 March 1998!

We study front propagation in a globally coupled bistable semiconductor system. The analysis is based on
an activator-inhibitor model derived for a gate-drivenpnpn structure that is globally coupled via a gate-
cathode circuit, but the model is applicable for more general cases of a spatially extended system with
Z-shaped bistability. We demonstrate that a global constraint allows for efficient control over the front propa-
gation. In the voltage-driven regime the front propagates with a constant speed whose value and direction are
controlled by the gate potential. Under general gate circuit conditions the front dynamics experiences either a
positive or a negative feedback which acts with adjustable delay. This allows for tuning between accelerated,
decelerated, and oscillating fronts.@S1063-651X~98!12408-X#

PACS number~s!: 05.70.Ln, 72.20.Ht, 85.30.2z
it
in
n

a
io

n
n
ra
o
us

t

ilit
m
na
ic
g
b-
n
e
a
e
a

ac

-
ible
cti-

-
nt
ing
ag-
tiv-
c-

ns

nt
ich

in-
ng
x-

or

he
of

of

ern

n
es
ing
nd

ans

tion

an
I. INTRODUCTION

Solid-state-based bistable or excitable active media w
local or global inhibition@1# have attracted much interest
recent years. Current instabilities, pattern formation, a
complex spatiotemporal dynamics have been studied
semiconductors and semiconductor devices@2–6#, and espe-
cially in layered semiconductor structures likepin diodes
@7,8#, heterostructure hot electron diodes@9,10#, resonant
tunneling diodes@11–13#, pnp ~transistor! structures@4#,
pnpn ~thyristor! structures@14–18#, andp1npn2n1 struc-
tures@19–23#. There is a high potential of expected applic
tions of such active spatially extended media for informat
processing and pattern recognition@24,25#; this implies spa-
tially inhomogeneous dynamical modes of operation a
therefore the prospects essentially depend on the inventio
efficient methods for controlling nonlinear spatiotempo
patterns. In this paper we address the problem of global c
trol over front propagation in bistable extended media, foc
ing on gate-drivenpnpn structures. Bistablepnpn struc-
tures not only exhibit a great variety of differen
spatiotemporal patterns, e.g., solitary filaments@26,16,17#,
front propagation@27,18#, Turing patterns@14,15,18#, but
also possess unique features with respect to controllab
These features are introduced by a spatially distributed
croelectronic gate which allows one to influence the inter
state uniformly over the whole cross section of the dev
@16,17#. In this case, in addition to the global couplin
through the main circuit, which occurs in all spatially distri
uted semiconductor systems@28–30# and has been studied i
our previous paper@31#, a global coupling through the gat
circuit arises@16,17#. The external control circuit imposes
global constraint on the internal dynamics and provid
means for control over spatiotemporal patterns. Recently,
tive external circuits with negative resistance and cap
tance have been implemented in experimental studies

*On leave from A. F. Ioffe Physicotechnical Institute, Russi
Academy of Science, 194021 St. Petersburg, Russia.
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multistable structures@11#. This makes the control of semi
conductor systems via a global constraint even more flex
since it allows us to arrange global constraints of both a
vator and inhibitor types.

If a bistablepnpn structure is switched from the low
conductivity to the high-conductivity state, a switching fro
triggers double injection from cathode and anode increas
the concentration of excess carriers up to ten orders of m
nitude. This results in a dramatic increase of both conduc
ity and light emission providing a basis for numerous ele
trical and optical applications. Originally these applicatio
were seen mainly in the field of power electronics@32#, but
nowadayspnpn structures attract attention as a promine
example of controllable solid-state-based active media wh
can serve as hardware for electrical@33# and optical@34#
pattern recognition systems. An implementation of the pr
ciples of autowave holography for information processi
@35# demands for controllable distributed media which e
hibit both front propagation and solitary patterns@36#. Mul-
tilayered pnpn structures are promising candidates f
single-crystal realizations of such media. In laserpnpn
structures control of switching fronts means control of t
active area of the semiconductor laser, which could be
great importance for optical systems.

In this paper we theoretically study the basic features
front propagation in apnpn structure globally coupled via a
gate-cathode circuit. We consider apnpn structure~Fig. 1!
whose design is similar to the single element of a mod
gate-turn-off thyristor~e.g., @32#!. It consists of a main cir-
cuit (K-A) connected to a bias voltageU, and a control
circuit including an applied voltageu0 , resistanceR, and
external capacitanceCext. The structure can be switched o
or off locally by applying a voltage to one of the lateral gat
G1 andG2 . For appropriate parameters such local switch
leads to the excitation of a front between high-current a
low-current regions moving along thex direction. Our aim is
to demonstrate that its dynamics can be controlled by me
of the spatially extended gateG. The gate-drivenpnpn
structure can be described by the reaction-diffusion equa

ta

]a~x,t !

]t
5 l 2

]2a~x,t !

]x2 1 f ~a,u,U !, ~1!
2796 © 1998 The American Physical Society
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with a nonlinear local kinetic function@16#

f ~a,u,U ![2aa1exp a2b exp~2U12a!1gU1ku.
~2!

Herea(x,t),u(t),U(t) are thep-base potential, gate poten
tial, and cathode-anode voltage, respectively (a, u, and U
are measured in units ofkT/e and are therefore dimension
less!. The characteristic lengthl and the coefficientsa, b, g,
k of the local kinetic function are determined by the stru
tural parameters@16#, ta is the characteristic relaxation tim
of a. We are interested in thex dependence of the interna
statea(x,t) of the semiconductor structure, assuming it to
homogeneous along they direction. Neumann boundary con
ditions are imposed ona(x,t).

The nonpolynomial local kinetic functionf (a,u,U), has
been derived from charge conservation and transport e
tions in @16#. The potentialsu andU play the role of param-
eters with respect to the bistable medium. Physically, bi
bility of a pnpn structure is associated with a change of t
central~collector! p1n-junction bias which is negative in th
off state and becomes positive as the structure is switc
on. This local kinetic function combines linear terms, cor
sponding to the leakage current ofpn junctions which makes
a major contribution to charge transport in the off state, a
highly nonlinear exponential terms, corresponding to inj
tion currents of the collector and emitterpn junctions, re-
spectively@16#. The latter dominate in the on state, but t
small prefactorb makes them negligible in the off state. Th
leads to the sharp rise of the local kinetic function~Fig. 2!.
Since the first term in Eq.~2! takes into account Ohmic con
ductances of both the gate contact and the emittern11p1

junction, whereas the last term contains the latter contri
tion only, we generally havea.k which is important for the
following analysis.

We assume a voltage-controlled main circuitU5const
and impose one global constraint corresponding to the c
trol circuit @37#:

FIG. 1. Sketch of the gate-drivenp11np1n11 structure and the
external circuit. The potential drops between the cathodeK and the
p1 layer, the gateG, and the anodeA are denoted bya, u, andU,
respectively~see inset showing a cross section of the structure!.
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dt
5u0~ t !2u2RE

0

L
j ~a,u!dx, tu5RC,

C5Cint1Cext. ~3!

HereL is the system length along thex direction,Cint is the
differential cathode-gate capacitance of the device,Cext has
the meaning of a differential capacitance of the external
cuit. For the current density per unit length between the g
and the cathode the following Ohmic dependence with c
ductivity s is assumed:

j ~a,u!5s~u2a!. ~4!

In the following we assume thatt and x are measured in
units of ta and l , respectively (t→t/ta , x→x/ l ), which re-
duces Eqs.~1! and ~3! to

ȧ5a91 f ~a,u,U !, ~5!

eu̇5u02~11v!u1v^a&, ~6!

where the dot and the prime denote the derivatives with
spect tot andx, respectively, and

^a&[
1

L E
0

L
a~x!dx, e[

tu

ta
, v[

R

r
, r[~Ls!21.

~7!

Note thatr has the meaning of total internal resistance of
gate contact. All variables we use in the following are d
mensionless.

The null isoclinea(u) of Eq. ~5! defined by f (a,u,U)
50 is S-shaped for sufficiently large values of the ma
voltageU.Ucr @Fig. 3~a!#. The steady-state current-voltag
characteristicj (u)[ j „a(u),u… of the gate current which re
sults from the dependencesa(u) and j (a,u) is Z-shaped
@Fig. 3~b!#. Current-voltage characteristics of this type ha
been found recently in the double-barrier resonant-tunne
diode ~DBRTD! @11#. Note that in contrast to the DBRTD
gate-driven pnpn structures are three-terminal devic

FIG. 2. The local kinetic functionf (a,u,U) ~dimensionless!.
The off, intermediate, and on states are denoted byaoff , aint , and
aon, respectively. The values ofu and U are chosen asu50 and
U530.75 satisfying the equal areas rule*off

on f (a,u,U)da50. The
numerical parametersa523109, b514.5, g5107, k5109 corre-
spond to a realisticpnpn structure@26#. All potentialsa, u, andU
are in units ofkT/e.
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which have aZ-shaped cathode-gate characteristic and
S-shaped cathode-anode characteristic. These different
linearities are associated with control and main circuits,
spectively, and theZ subsystem is used to control theS
subsystem. Stationary and moving kinklike patterns in
DBRTD in the voltage-controlled regime have been stud
in @13#. Up to now the DBRTD remains the most promine
example of a semiconductor system which experiences s
a characteristic. Our main conclusions, however, may be
plied to more general cases of an extended system wi
Z-shaped bistability.

The paper is organized as follows. In Sec. II we study
case of a voltage-driven control circuit where the switch
front propagates in a self-similar way. Here we establish
approximate analytical dependence of the front velocity
the control potential and compare it with the results of n
merical simulations. Section III is devoted to the effect o
global constraint on front dynamics. We demonstrate t
this constraint can provide both positive and negative fe
back and allows for tuning between accelerated, decelera
and oscillating fronts. A stability analysis of stationary fron
in the presence of a global constraint is performed in
Appendix.

II. SELF-SIMILAR FRONT PROPAGATION

Let us consider the case of a voltage-driven control circ
u5const first. The dynamics is then governed by Eq.~5!
with fixed external parametersu and U in the local kinetic
function f (a,u,U). Therefore a transition from the off stat
into the on state~via a propagatinghot front! or from the on
state into the off state~via a propagatingcold front! occurs
with a constant speedv and a self-similar profilea(x,t)
5a0(x2vt); it represents the nonequilibrium phase tran
tion from a metastable state to a stable state@1,38#. Here we
assumev.0 andv,0 for hot and cold fronts, respectively
Front propagation inpnpn structures was first described a
an autowave in bistable media in@27#. In the comoving
frame Eq.~5! takes the form

a091va081 f ~a0 ,u,U !50 ~8!

FIG. 3. ~a! Null isoclinea(u) given by the local kinetic function
f (a,u,U)50 and ~b! Z-shaped local current density vs voltag
characteristicj (u) for U530.75 (a, u, U, and j /s are in units of
kT/e). The lower branchoff of thea(u) relation corresponds to th
upper branch ofj (u) and vice versa. The holding voltageuh and the
threshold voltageuth denote the left and right boundaries of th
bistability regime. The inset in~a! shows the turning point atuth and
the voltageucr defined by Eq.~29! in an enlarged scale.
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and the required front solution with

a0~x!→aon,aoff for x→2`,1` ~9!

corresponds to a saddle-to-saddle trajectory~heteroclinic or-
bit! in the corresponding phase portrait. In this section
will establish the dependence of the front velocityv and the
front width W upon the control potentialu.

A general expression for the front velocity can be deriv
by multiplying Eq.~8! by a08 and integrating over*2`

1`dx @1#:

v5AF E
2`

1`S da0~x!

dx D 2

dxG21

, A[E
aoff

aon
f ~a,u,U !da.

~10!

The front has zero velocity if the equal areas ruleA50
@2# holds. Without loss of generality we assume that the m
voltageU is fixed at the valueU5Uco which is given by the
equal areas rule*aoff

aon f (a,u50,Uco)50 corresponding to

zero control voltage. Then foru50 the front represents a
stationary kink.

To further evaluate the dependencev(u) we take into
account the specific features of the local kinetic function~2!
~Fig. 2! and the resultinga(u) dependence@Fig. 3~a!# and
assume: ~a! in the interval@aoff ,aint# the local kinetic func-
tion is approximately linear and given byf (a,u,U)'2aa
1gU1ku; ~b! (aon2aint)!(aint2aoff), where aon, aoff ,
andaint denote the on, off, and intermediate stationary sta
respectively;~c! aon andaint essentially do not depend on th
gate potentialu @Fig. 3~a!#, and aoff(u) is given by aoff

5ãoff1(k/a)u, whereãoff5(g/a)U corresponds tou50.
Because of assumption~a! Eq. ~8! has an explicit solution

in the interval@aoff ,aint#:

a0~x!5aoff1~aint2aoff!exp@2x/L~v !#,

L~v !21[
v
2

1Av2

4
1a. ~11!

Here L(v) is a characteristic length governing the fro
width W ~see Fig. 4! whose scale is given bya21/2. Due to
assumption~b! the contribution of the interval@aint ,aon# to
the front width is small. Therefore we can neglect the co
tribution of the corresponding interval@2`,0# on thex axis

FIG. 4. The spatial profiles of the stationary front~curve 1,u
50), hot front ~curve 2,u5uth/2), and cold front~curve 3,u5
2uth/2). The front widthW and the characteristic lengthL defined
by Eq. ~11! are indicated. The system length isL51000 (a andx
are in units ofkT/e and l , respectively!.
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to the integral in Eq.~10!. „This means that for the interva
@aint ,aon# the second term in Eq.~8! can be neglected.… Ap-
proximating

E
2`

1`S da0~x!

dx D 2

dx'E
0

1`S da0~x!

dx D 2

dx ~12!

and inserting Eq.~11! into Eq.~10!, by direct calculation we
obtain an expression which determines the velocity and
width of the front:

v

2
1Av2

4
1a5L~v !215

A2D

aon2aoff
, ~13!

where

D[E
aint

aon
f ~a,u,U !da5A1

1

2
a~aint2aoff!

2. ~14!

Here we have neglected the difference betweenaon andaint .
This expression is valid for both hot and cold fronts. W
increasing absolute value of the front velocityuvu the front
width W decreases or increases for hot (v.0) or cold (v
,0) fronts, respectively.

For slow fronts (uvu!Aa), Eq. ~11! gives L21(v)'v/2
1Aa. Equation~13! can be linearized with respect tov/Aa.
This yields

v5
2A

Aa~aon2aoff!
2

. ~15!

For fast hot fronts (v@Aa), Eq. ~11! yields L21'v andA
'D holds. Equation~13! is equivalent to the well-known
expression@1#

v5
A2A

aon2aoff
~16!

originally derived in@39# for combustion fronts. For fast cold
fronts (v,0, uvu@Aa, uAu@D) linearization of Eq.~13!
with respect toAa/uvu leads to the formula

v52AuAu
D

, ~17!

which is specific for the local kinetic function~2!.
We shall now use Eq.~13! to determine the dependenc

v(u). The dependence ofD uponu,

D~u!5D~0!1k~aon2aint!u,
~18!

D~0!5exp aon2exp aint2
1

2
a~aon

2 2aint
2 !

1a~aon2aint!ãoff ,

is weak due to aon2aint!aon2aoff . Assuming D(u)
'D(0) we conclude that the front velocity is mainly dete
mined by the front contrasth[aon2aoff :
e

v

2
1Av2

4
1v0

25v0

h0

h
, v0[Aa, ~19!

where h05aon2ãoff corresponds to the stationary front
u50. In order to eliminateD~0! from Eq.~19! we have taken
into account thatv50 for h5h0 . Equation~19! determines
the dependence of the front velocity on front contrastv(h) in
an implicit form. The characteristic speedv0 sets the scale o
the front velocity.

Now let us derive thev(u) dependence. Taking into ac
count assumption~c! @aoff5ãoff1(k/a)u and aon'const#
we obtain

v

2
1Av2

4
1v0

25v0S 12
u

ucr
D 21

, ~20!

whereucr[(a/k)h0 corresponds to the point where the e
trapolated off branch intersects the on branch of thea(u)
characteristic@Fig. 3~a!#. Since ucr exceeds the threshol
voltageuth Eq. ~20! is valid only within the bistability regime
u,uth . For small values ofu the v(u) dependence is given
explicitly by

v~u!52v0

u

ucr
for uvu!v0 . ~21!

In Figs. 5~a! and 5~b! the front velocityv(u) given by Eq.
~20! ~solid line! is compared with the dependence obtain
from direct numerical simulations of the front propagati
~dashed line!. There is good agreement in the intervaluh/2
,u,uth . The significant discrepancy foruh,u,uth/2 re-
sults from the violation of the assumptionD(u)'D(0) for
fast cold fronts. The threshold pointsuh anduth correspond
to the degenerate situations where the metastable stateaon or
aoff , respectively, merge with the unstable stateaint . The
corresponding velocitiesv(uh) andv(uth) are maximum ve-
locities of cold and hot fronts, respectively. Numerical sim
lations show thatudv(u)/duu5` at u5uh , uth which is not
predicted by Eq.~20!. However, we conclude that in th
most interesting range of control parametersu Eq. ~20! de-
scribes the velocity of both hot and cold fronts within go
accuracy. According to Eqs.~13! and~20! the front widthW
is proportional to the deviation of the control potential fro

FIG. 5. ~a!,~b! Front velocity v and ~c! front width W as a
function of the gate potentialu for self-similar front propagation (v
andW are normalized by the characteristic velocityv0[Aa and the
width W0 of the stationary front atu50, respectively,u is in units
of kT/e). In ~b! a part of ~a! is shown in an enlarged scale. Th
numerical result and the analytical approximation are plotted
dashed and solid lines, respectively.
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the critical valueucr : W;(ucr2u). This prediction is also
confirmed by numerical simulations for the intervaluh/2
,u,uth @Fig. 5~c!#.

In the (̂ a&,u) phase plane the trajectories correspond
to the self-similar front propagation are represented
straight vertical arrows~Fig. 6!. The phase flow is directed
up towards the on state~hot fronts! and down towards the of
state ~cold fronts! for u.0 and u,0, respectively. ForL
@W the lineu50 corresponds tov50 ~stationary kinks!. In
finite-size systems the branch of stationary kinks slightly
viates from the vertical direction in such a way that^a&
decreases asu increases. That leads to the instability of s
tionary kinks with respect to infinitesimal fluctuations in th
current-controlled regime. The detailed stability analysis
stationary kinks in the presence of a global constrain
given in the Appendix.

III. GLOBALLY COUPLED DYNAMICS
OF FRONT PROPAGATION

A. Regimes of the load line

Generally, the average valuêa& depends on the fron
position w and due to the global constraint the control p
rameteru changes as the front propagates. That leads to
celeration or deceleration of the front motion. We shall d
cuss this in the (̂a&,u) phase plane. The null isoclin
corresponding to Eq.~6! is given by

^a&5
11v

v
u2

u0

v
. ~22!

It is equivalent to theload line

^ j &5
s

v
~u02u!5

u02u

RL ~23!

in the (̂ j &,u) plane, observing Eq.~4!. The intersection
points of the load line with the steady-state characteri
^a(u)& @resulting from a91 f (a,u,U)50# determine the
fixed points of the system. Forbistable regimes which are
relevant for front propagation the null isocline~22!, i.e., the

FIG. 6. The phase flow in the (^a&,u) plane for self-similar
front propagation in the voltage-driven regime. The thick solid l
shows the null isoclinea(u) of spatially uniform solutions@cf. Fig.
3~a!#. The thin solid line atu50 represents a branch of stationa
fronts for L@W; the dashed line corresponds to stationary fro
for finite system size (L52W0). (a andu are in units ofkT/e.)
g
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load line, should intersect both the on and off branches of
spatially homogeneousa(u) dependence given by
f (a,u,U)50. We distinguish three different situationsv
.0, 21,v,0, and v,21 where the null isocline has
positive, negative, and again positive slope, respectiv
These null isoclines and the corresponding positions of
load line with respect to theZ-shaped current-voltage cha
acteristic are shown in Fig. 7. Forv,0 the load resistanceR
is negative. This can be achieved by implementation of
active external circuit@11#. The total resistivity of the gate
circuit (R1r ) is positive for 21,v,0 and negative for
v,21. Forv50 andv5` we have voltage- and curren
controlled conditions, respectively. According to Eq.~6! for
fixed ^a& the variableu tends to the quasistationary valu
given implicitly by Eq. ~22! for e.0 if v.21 and fore
,0 if v,21. In this case the null isocline~22! attracts
trajectories in the (̂a&,u) plane. In the opposite case of re
pulsion the dynamics of our model becomes unbound
Physically, the case of repulsion corresponds to the regi
of homogeneous oscillations induced by negative exte
resistanceR which are of no interest with respect to the fro
propagation. It should be noted that in order to exclude s
oscillations for21,v,0 one should provide a negativ
capacitanceC,0 as well ~see @11,40,31#!, whence e
[RC/ta.0.

B. Reduction of the equations of motion

An analytical insight into nonlocal dynamics can b
achieved by a reduction of the equations of motion~5!, ~6!.
Let us parametrize a propagating front by its positionw(t)
and its contrasth(t)[aon2aoff(t). Since in large systems
the relaxation of the front shape is fast compared to the fr
motion, the front dynamics can be described by ordin
differential equations for these reduced order parame
@41#, together with the global constraint:

s

FIG. 7. Different regimes of the load line.~a! The slope of the
null isocline~22! of the control voltageu in the (̂ a&,u) phase plane
for different values ofv ~load resistance!. The sectors correspond
ing to v.0, 21,v,0, andv,21 are marked by arrows on th
circular boundary. The dotted lines separating these different
gimes correspond to the respective null isoclines^a&5u1const(v
56`), ^a&5u0(v521), andu5u0(v50). Note that for a fixed
value ofv a null isocline may be shifted vertically by changingu0 .
The thick solid lines show the spatially homogeneous steady-s
characteristic.~b! The corresponding position of the load line wit
respect to theZ-shaped current-voltage characteristic in the (j ,u)
phase plane. The inclined dotted line is parallel to the lowest~on!
branch of the current-voltage characteristic.
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ẇ5v~h!, ~24!

ḣ5a~h02h!2ku, ~25!

eu̇5u02~11v!u1vS aon2h1h
w

LD . ~26!

Equation~24! determines the front velocity according to E
~19!. Equation~25! describes the relaxation of the front co
trast. As in our modelaon5const this relaxation is related t
the relaxation of the homogeneous off state only and th
fore Eq. ~25! follows directly from Eq.~5!. Equation~26!
represents the global constraint~6! where ^a& is expressed
throughw andh. The contribution of the front wall tôa& is
neglected. Following@41# we refer to Eqs.~24!–~26! as to
reduction (i).

Further simplification of the equations of motion can
achieved if the relaxation of the contrasth is fast compared
to the front propagation. It follows from Eq.~24! that the
time scale forh is a21. The time scale forw refers to the
time it takes for the front to advance by its own widthW.
Taking into account that the characteristic front width
a21/2 we arrive at the conditionuvu!v0[Aa. Therefore we
can expect that for sufficiently low velocities the variableh
in the dynamical system~24!–~26! can be considered as
fast variable. Generally, that might result either in a situat
where this variable can beadiabatically eliminated@the con-
trast h(t) is close to that of the quasistationary front corr
sponding to the instantaneous value ofu# or in a situation
wherefast motionrelated to this variable dominates the d
namics of the other variables. In order to check whether s
fast motion occurs in our system let us consider reduction~i!
for e!a21 when there is no delay in the response of t
control potential to the momentary value of^a&. Then elimi-
nating u adiabatically, we arrive at what will be calledre-
duction (ii):

ẇ5v~h!, ~27!

ḣ5kS ~ucr2ua!2Bh2Ah
w

LD , ~28!

where

ua[
v

v11 S aon1
u0

v D , A[
v

v11
, B[

a

k
2

v

v11
.

~29!

The potentialua corresponds to the point where the load li
intersects the on branch of thea(u) characteristic. The nul
isocline ~22! in the (̂ a&,u) plane ~Fig. 7! has positive or
negative slope forA.0 or A,0, respectively. The param
eterB controls the slope of the null isocline~22! relative to
the slope of the off branchaoff(u)5ãoff1(k/a)u. ~Note that
due toa/k.1 the latter slope never exceeds unity.!

The null isoclines in the (h,w) phase plane are explicitly
given byh5h0 for Eq. ~27! and

h5
ucr2ua

A ~w/L!1B
~30!
e-

n

-

h

for Eq. ~28!. Taking into account Eq.~29! and aon2aint
!aon2aoff we conclude that the following four combina
tions of signs ofA, B, (ucr2ua) are possible:

~A.0, B.0, ucr2ua.0!

for v.0 and for v,2
a

a2k
, ~31!

~A,0, B.0, ucr2ua.0! for 21,v,0, ~32!

~A.0, B,0, ucr2ua.0!

for 2
a

a2k
,v,21 if u0.~11v!ucr1vaon,

~33!

~A.0, B,0, ucr2ua,0!

for 2
a

a2k
,v,21 if u0,~11v!ucr1vaon.

~34!

Standard phase portrait analysis in the (w,h) plane shows
that the variableh rapidly relaxes to the null isocline~30! for
the cases~31!–~33!. This implies that asymptotically all mo
tion occurs along the null isocline~30!. For case~34! the
component of the phase flow related to the variableh
changes its direction and the null isocline~30! does not at-
tract the phase flow anymore. The fixed point correspond
to a stationary front is a saddle point and the null isocl
~30! closely approximates the stable manifold of this fix
point. Fast dynamics of the variableh driving the system
away from this manifold is expected in this case. The c
~34! corresponds to a specific position of the load line~23!
where it has one intersection with the off branch of t
current-voltage characteristic within the bistable region a
another intersection with the on branch atua.ucr . We will
discuss the front dynamics for this regime in detail in S
III F.

The analysis above indicates that the variableh can be
adiabatically eliminated in all regimes of global couplin
except for case~34!. Since the contrasth(t) is close to that
of the quasistationary front corresponding to the instan
neous value ofu the front velocity is determined by the valu
of u and we can use the dependence~20! instead of Eq.~19!.
In this case reduction~i! results in the following two-
component model@referred to asreduction (iii)#

ẇ5v~u!, ~35!

eu̇5vFua2u

A
2

k

a S 12
w

LD ~ucr2u!G . ~36!

Here v(u) is the velocity of a quasistationary propagatin
front for the control voltageu, andh(u)5h02(k/a)u has
been taken into account.

In the following we compare the predictions of the redu
tions ~i! and~iii ! with the results of numerical simulations o
the full model~5!, ~6!.
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C. Feedback on front dynamics for different types
of global coupling

In this subsection we discuss the different types of fe
back upon front dynamics occurring for different regimes
the load line. First let us use reduction~iii ! and consider the
additional assumptione!a21 where there is no delay in th
response of the control potentialu to the front position. Then
Eq. ~36! directly determines the instantaneous dependenc
u on the front positionw. Substituting this dependence in
Eq. ~20! we obtain the following dependence of the fro
velocity v on the front positionw:

v

2
1Av2

4
1v0

25v0

ucr

ucr2ua
S A

w

L
1BD k

a
. ~37!

@The same result follows from reduction~ii ! by substituting
Eq. ~30! into Eq. ~19!.# Equation~37! allows one to under-
stand what kind of feedback occurs for different slopes of
null isocline. It is readily seen that the type of feedback
governed by the sign of the productd[(ucr2ua)A. For ua
,ucr we get sgnd5sgnA, and the feedback is positive o
negative for positive or negative slope of the null isoclin
respectively, i.e., the front velocityv increases or decrease
respectively, with increasingw(t). For ua.ucr the reverse
holds. The front propagates with acceleration and decel
tion for d.0 andd,0, respectively. According to Eq.~37!
for uvu!v0 or v@v0 the front velocityv increases linearly
with the front positionw which indicates the exponentia
character of the front propagation.

In the opposite limit case of slow relaxation of the cont
potentiale@a21 the front propagates with a constant spe
given by the initial value ofu for any global constraint.

In order to understand the front dynamics for intermedi
values ofe, as well as to study the limits of the reduce
two-component model~35!, ~36!, we have performed nu
merical simulations of the full model~5!, ~6!. Obviously, the
analysis of front propagation requires specific initial con
tions. We assume that the initial distributionai(x) is a step-
like pattern: ai(x)5aon for x,xi ; ai(x)5aoff(ui) for x
.xi , wherexi andui are initial front position and initial gate
voltage, respectively. In the absence of global constra
such a steplike pattern is known to evolve exponentially f
into a smooth front profile traveling at constant veloc
@38,42,43#. In the following we focus only on regimes whic
are associated with front propagation and assume that
initial point „^ai(x)&,ui… is located sufficiently close to th
null isocline. Physically, different initial conditions can b
realized by means of the lateral gatesG1 ,G2 .

Now let us discuss the front dynamics for different typ
of global constraints in detail.

D. Positive feedback„v>0…

In the case of positive load resistanceR (v.0) the pa-
rametersA andB are always positive.B.0 means that the
slope of the null isocline~22! is larger than that of the of
branch of thea(u) characteristic. Thereforeua,ucr holds
for any null isocline which intersects both the on and the
branch of thea(u) characteristic@see Eq.~31!#. According to
Eq. ~37! we have positive feedback and acceleration of
-
f

of

e
s

,

a-

l
d

e

-

ts
t

he

f

e

front. Numerical simulations of the full model~5!, ~6! are
shown in Fig. 8 for three different positions of the load lin
@dotted in Fig. 8~a!# and different initial conditions. The fron
velocity v and the relative deviation of the contrast from
quasistationary valueh are shown as a function of time i
Figs. 8~b! and 8~c!, respectively. Trajectory 1 (u0.0) cor-
responds to an accelerated hot front starting close to the
state and ending in the homogeneous on state@Fig. 8~d!#.
Trajectory 4 belongs to a load line with loweru0,0; it
corresponds to a cold front starting close to the on state
ending in the off state@Fig. 8~e!#. In the case ofãoff,
(2u0 /v),aon @the middle load line in Fig. 8~a!# there is an
intersection point of the load line~null isocline! with the
branch of stationary fronts atu50. This point corresponds to
a stationary kink solution. Linear stability analysis~see the
Appendix! indicates a saddle-type instability of this kink s
lution for v.0, e.0. Accelerated hot (v.0) and cold (v
,0) fronts predicted by Eq.~37! for ãoff,(2u0 /v),aon
represent motion along the unstable manifolds of this sad
point @trajectories 2 and 3, respectively, in Fig. 8~a!#. The
feedback is most efficient for the current-controlled regim
(v@1) in the control circuit. An increase ofe as it occurs
with an increase of the capacitanceC results in a delay of the
control potential response upon the front position and the
fore the front acceleration is diminished@trajectories
18,28,38,48 in Fig. 8~a!#. For large values ofe we return to

FIG. 8. Propagation of accelerated fronts in the case of posi
feedbackv.0 (R.0). ~a! Phase trajectories in the (^a&,u) plane
~solid lines with arrows!. The thick solid lines show the spatiall
homogeneous steady-state characteristics. Numerical simula
are shown for three different load lines~dotted! corresponding to
v5100 ~nearly current controlled! and u05200, 21500,23200.
Two different values ofe[RC/ta are used:e51029 ~trajectories
1,2,3,4! and e5531029 ~trajectories 18,28,38,48). Slightly differ-
ent initial conditions are employed for trajectories 2,28 and 3,38,
respectively.~b! Front velocityv normalized byv0 as a function of
time for the trajectories presented in~a!. ~c! Relative deviation of
the front contrast from its quasistationary valueh as a function of
time for the trajectories presented in~a!. ~d! Temporal evolution of
the accelerated hot front corresponding to trajectory 1.~e! Temporal
evolution of the accelerated cold front corresponding to trajector
Note that the orientation of axes in~d! and ~e! has been chosen
differently for better visualization. Numerical parameters as in F
2. (a,u are in units ofkT/e, x and t in units of l andta , respec-
tively.!
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the case of self-similar front propagation with a const
speed sinceu does not change appreciably. The deviation
the actual front contrasth(t) from the quasistationary valu
h„u(t)… corresponding to the instantaneous value ofu is neg-
ligible @Fig. 8~c!#. This justifies reduction~iii ! in that particu-
lar case. The agreement with the full model~5!, ~6! is very
good.

E. Negative feedback„21<v<0…

The case21,v,0 corresponds to a negative extern
resistanceR,0 whose absolute value does not exceed
internal resistancer so that the total resistance of the ga
contact and external load remains positive. Here we hav
negative slope of the null isoclineA,0, andB.0, ua,ucr
holds @see Eq.~32!#. Due tod,0 the feedback is negativ
and fronts propagate with deceleration@Fig. 9~a!#. The final
state depends on the particular position of the null isoc
~22!. For2u0 /v.aon and2u0 /v,aoff the final state is the
on and off state, respectively~trajectories 1 and 4, respec
tively!. For aoff,(2u0 /v),aon the system eventually ap
proaches the stationary kink pattern atu50 ~trajectories 2

FIG. 9. Front propagation in the case of negative feedb
21,v,0 (2r ,R,0). Numerical simulations are shown fo
three different load lines~dotted! corresponding tov520.5 and
u0520 ~trajectory 1!, u058 ~trajectories 2,3,5!, u050 ~trajectory
4!. Three values ofe are used:~a! e510211, ~b! e51028, ~c! e
51026. The left column shows the phase trajectories in the (^a&,u)
plane. Throughout~a!,~b!,~c!, trajectories labeled with the sam
number are calculated with the same load lines and the same i
conditions. Trajectory 5 in~c! corresponding to an oscillatory insta
bility of the stationary front is calculated withv520.95. Note that
in ~c! the scale on theu axis has been expanded in the interv
@20.5,0.5# in order to make these oscillations visible. The cen
column shows the front velocityv normalized byv0 as a function
of time. The right column shows the temporal evolution of fron
~a! monotonic and~b! oscillatory slowing down of the front propa
gation corresponding to trajectory 3;~c! growing oscillation corre-
sponding to trajectory 5. (a,u are in units ofkT/e, x andt in units
of l andta , respectively.!
t
f

l
e

a

e

and 3!. Stability of the stationary kink fore.0 is given by
the criterion~A8!, which can be approximately represent
as

211el1,v,2
l1

k
, ~38!

wherel1.0 is the eigenvalue of the only unstable eige
mode related to the kink solution~see the Appendix!. Since
l1!1 for L@W, this criterion is close to21,v,0 for
small e. If v lies in the interval given by Eq.~38!, the fixed
point corresponding to the stationary kink is a stable node
stable focus fore.0. In the first case, the slowing down of
front is monotonic@Fig. 9~a!#, in the second case we find a
oscillatory slowing down@Fig. 9~b!#. The lower bound of the
criterion ~38! corresponds to an oscillatory instability: fo
v,211el1 the fixed point is an unstable focus. This in
stability results in growing oscillations of the front positio
@Fig. 9~c!, trajectory 5#. The amplitude of these oscillation
increases monotonically. We have never observed lim
cycle oscillations of the front position in our numerical sim
lations. Eventually the front reaches the boundary. Star
from this point the system remains in the subspace of s
tially homogeneous solutions and its dynamics depends
whether the null isocline intersects the on or off branch
the a(u) characteristic. If it does, the system eventually a
proaches the nearest homogeneous fixed point as show
Fig. 9~c! ~curve 5!. Otherwise the front oscillations evolv
into homogeneous oscillations. The oscillatory instability
a stationary front originates from the attraction of a front
the boundaries@31# that takes place in the voltage-controlle
regimeu5const and is reflected by the positiveness of
eigenvaluel1 . Note thatl1 decreases exponentially wit
system sizeL and in an infinite systeml150 due to the
translation invariance. Therefore the oscillatory instabil
essentially represents a boundary effect which is not typ
for fronts on large spatial domains. The deviation of the fro
contrasth from its quasistationary value is small for all re
gimes. However, since reduction~iii ! does not include
boundary effects it cannot describe the oscillatory instabi
@Fig. 9~c!, trajectory 5#.

F. Indeterminate feedback„v<21…

For v,21 the slope of the null isocline~22! becomes
positive again (A.0). In this situation we should compare
with the slopek/a of the off branch of thea(u) character-
istic distinguishing between the situationB.0 and B,0
~Fig. 10!. ForB.0 @see Eq.~31!# the null isocline~load line!
intersects both the on and the off branch of thea(u) charac-
teristic ~Fig. 10, curve 1!, ua,ucr holds, and the system dy
namics is qualitatively the same as for the positive loadv
.0: The feedback is positive and the fronts propagate w
acceleration. If the load line intersects the stationary k
solution atu50 this kink exhibits a saddle-type instability
e,0 ~see the Appendix!. The only difference between th
casesv.0 andv,21 is that the sign ofe[RC/ta should
be reversed in the latter case, but forC.0 this occurs auto-
matically if R changes sign. This qualitative similarity be
comes a quantitative one for the current-controlled regi
uvu@1: For a heavily loaded circuit the sign of the extern

k
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r
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resistance does not play a role if the polarity of the volta
source is chosen appropriately.

For B,0 @2a/(a2k),v,21# the slope of the null
isocline is smaller than that of the off branch. If the nu
isocline intersects the stationary kink solution atu50, two
cases are possible: there is a further intersection either
the off branch of thea(u) characteristic at 0,u,ucr ~Fig.
10, curve 2!, or with the on branch only~Fig. 10, curve 3!.
@Curves 2 and 3 correspond to the cases~34! and ~33!, re-
spectively#. Since there is no intersection foru,0, the sys-
tem dynamics may become unbounded, i.e., unphysical
u,0, therefore in the following we restrict our considerati
to u.0.

For B,0 andua,ucr the null isocline intersects the o
branch only. Sinced5(ucr2ua)A.0 we expect positive
feedback. Foru.0 the system dynamics is qualitative
similar to the caseB.0. In particular, a stationary kink a
u50 experiences a saddle-type instability fore,0 and the
accelerated front predicted by reduction~iii ! corresponds to
motion along the unstable manifold of the saddle point up
the stable on state~Fig. 10, curve 3!. For B,0 andua suf-
ficiently larger thanucr the null isocline first intersects the o
branch of thea(u) characteristic and further on also the o
state ~Fig. 10, curve 2! implying d5(ucr2ua)A,0 and
negative feedback. This situation corresponds to the c
~34! where fast motion related to the variableh is expected.
Here we meet anew situationin the (̂ a&,u) phase plane
because the decelerated front predicted by reduction~iii ! and
tending to the stationary kink pattern atu50 now corre-
sponds to motion along the stable manifold of the sad
point. Decelerated fronts have indeed been found num
cally as solutions of the full system~5!, ~6! for carefully
chosen initial conditions. The corresponding trajectory in
(^a&,u) plane closely follows the null isocline~22! in such a
way that u decreases up to the stationary kink state@Fig.
11~a!, curve 1#. In the following we refer to this solution a
to thestable kink mode. However, numerical simulations re
veal also the possibility of a qualitatively different motio
where the trajectory runs in the opposite direction~unstable
kink mode! until it reaches the stable on state@Fig. 11~a!,
curve 2# @45#. Note that the phase portrait in Fig. 11~a! is a
projection of a high-dimensional space, and trajectory 2 n
not be close to trajectory 1 in this larger phase space.

FIG. 10. Possible positions of the load line~dotted! in the
(^a&,u) phase plane forv,21. Line 1 corresponds toB.0, lines
2 and 3 toB,0. The arrows denote unstable~lines 1, 3! and stable
~line 2! manifolds of the saddle point corresponding to the stati
ary kink. The thick solid lines show the spatially homogeneo
steady-state characteristics. The intersection point of the load
with the on state (ua) is marked for the null isocline 2 only.
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essential difference of the unstable kink mode from
stable kink mode is a significant deviation of the actual co
trast h(t) from its quasistationary valueh„u(t)… @see Fig.
11~b!#. The variableh cannot be adiabatically eliminated an
reduction~iii ! fails in this case. This confirms our analys
related to reduction~ii ! in Sec. III B. An analytical descrip-
tion of the unstable kink mode can be obtained only on
basis of reductions~i! or ~ii ! which treat the front contrast a
an independent variable. This type of feedback is very s
sitive to the initial conditions. Generally, the stable or u
stable kink mode is favored if the initial condition̂ai(x)&
lies above or below the null isocline~22!, respectively.

The stable and unstable kink modes correspond to de
erated@Fig. 11~c!# and accelerated@Fig. 11~d!# fronts, re-
spectively. However, since the unstable kink mode is tr
gered by the fast dynamics of the front contrasth, the motion
of the front wall is negligible, and the fast change of t
contrast makes the major contribution to the dynamics of^a&
thus driving the system rapidly towards the homogeneous
state@Fig. 11~d!#. This is consistent with the observation th
the homogeneous off state is now unstable. With increas
ueu the unstable kink mode becomes more similar to a w
pronounced accelerated front@Fig. 11~a!, curve 3 and Fig.
11~e!#. For the same values ofe the stable kink mode canno
be excited anymore: the same initial conditions as in F
11~c! give rise to a mixed motion which starts like a dece
erated front but eventually develops into an accelerated o
That means that reduction~iii ! becomes completely obsolet
with increasinge.

-
s
e FIG. 11. Front propagation in the case of indeterminate fe
back v,21 (R,2r ). Numerical simulations are shown for
load line corresponding tov521.1 andu0518 (ua.ucr , B,0).
~a! Phase portrait. The null isocline~dotted! intersects the off
branch of thea(u) characteristic~solid line!. Trajectories 1~stable
kink mode! and 2 ~unstable kink mode! are calculated fore5
210212. Trajectory 3 corresponds to the same initial conditi
as 2 bute525310210. ~b! Relative deviationDh of the actual
front contrast from its quasistationary valueh for trajectories 1,2,3
~normalized to h). ~c! Temporal evolution of the decelerate
hot front corresponding to trajectory 1~stable kink mode!. ~d! Tem-
poral evolution of the front corresponding to trajectory 2~un-
stable kink mode!. ~e! Temporal evolution of the accelerated h
front corresponding to trajectory 3~unstable kink mode with
e525310210). (a,u are in units ofkT/e, x andt in units of l and
ta , respectively.!
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IV. CONCLUSIONS

In this paper we have studied front propagation in a ga
driven semiconductor structure. The system is globa
coupled via a gate-cathode circuit which exhibits aZ-shaped
bistable current-voltage characteristic. The cathode-an
voltage in the main circuit is fixed and serves as an exte
parameter which controls the global level of excitation. T
type of global constraint and the relaxation timetu associ-
ated with the global constraint are governed by the load
sistanceR and the external capacitanceCext, respectively.

We have shown that it is possible to arrange either p
tive or negative feedback upon the front dynamics by glo
coupling. ForR.0 the feedback is always positive and bo
hot and cold fronts propagate with acceleration~Fig. 8!.
They effect a nonequilibrium phase transition to the hom
geneous on or off state, respectively. A negative exte
load R,0 can be introduced by applying an active exter
circuit. In this case the type of constraint essentially depe
on the relation between the external load and the resista
of the gate contactr . For R1r .0 the feedback is negativ
and the front propagates with deceleration. In order to k
the relaxation timetu positive and prevent circuit-induce
spatially homogeneous relaxation oscillations one sho
provide also a negative external capacitance in this case
appropriate choice of the bias voltageu0 in the control cir-
cuit the global constraint can always be tuned such that
decelerated front eventually ends up in a stable station
kink pattern@Fig. 9~a!#. With increasingtu this fixed point is
transformed from a stable node@Fig. 9~a!# to a stable focus
and the transients take on the form of damped front osc
tions@Fig. 9~b!#. Further increase oftu leads to an oscillatory
instability @Fig. 9~c!#. The critical value oftu where the sta-
tionary front becomes unstable for any slope of the load
in the interval2r ,R,0 is given bytu'ta /l1 , wherel1
is the eigenvalue of the unstable translation mode relate
the stationary kink. The front oscillates with growing amp
tude and, as it reaches the boundary, the system switch
the homogeneous mode. Limit-cycle oscillations of the fro
position, similar to those obtained in@44# for the ballast re-
sistor, do not occur in our model. It is essential that
system remains in a homogeneous state—steady
oscillatory—as far as boundary conditions~determined by
the lateral gatesG1 ,G2) and global constraint remain un
changed.

All regimes discussed above~except for the oscillatory
instability of a stationary front in the case of negative fee
back! can be described by a reduced two-component mo
which treats the front positionw and the gate voltageu as
dynamical variables and assumes that relaxation of the f
contrast and front shape occurs fast compared to the f
motion. However, this model fails forR1r ,0 where both
positive and negative feedback upon front dynamics beco
possible depending on the position of the load line with
spect to the current-voltage characteristic. Qualitatively d
ferent modes, such as accelerated and decelerated fronts
be excited for very close-by initial conditions. Whereas d
celerated fronts are predicted by the two-component redu
model, the description of accelerated fronts requires at lea
reduced model which treats the front contrast as an inde
dent dynamical variable.
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Our analysis is applicable to general spatially extend
semiconductor systems with aZ-shaped current-voltage
characteristic including such quantum devices as the do
barrier resonant tunneling diode@11–13#. Self-sustained os-
cillations of the front position in the DBRTD have bee
theoretically predicted in@12# for the case of a resonant~sec-
ond order! external circuit. The analysis in@12# is based on a
simplified model and assumes that the oscillation cycle c
sists of two consecutive stages: front propagation leadin
the homogeneous state, and subsequent circuit-induced
laxation of the voltage. During the second stage the devic
assumed to be in a homogeneous state. However, it rem
unclear how the kink pattern can emerge again from the
mogeneous state after the second stage of the oscilla
cycle has been completed. Our present analysis provid
thorough understanding of pattern formation in the DBRT
for a realistic first order external circuit and Neuma
boundary conditions.

Note that the gate-drivenpnpn structure is a three-
terminal device which has aZ-shaped cathode-gate curre
voltage characteristic and anS-shaped cathode-anode cha
acteristic. Generally, such systems should be treated
bistable medium with two global constraints associated w
main and control circuit, respectively, with different nonlin
earities. In this paper we have shown that for positive lo
the gate circuit provides a positive feedback upon the fr
dynamics. It is well known that the feedback associated w
the main circuit is negative. In future work we will study th
front dynamics taking both constraints into account and e
phasizing the effects which occur due to the interplay
tween positive and negative feedback.

Our analysis also touches upon some general aspec
front propagation in globally coupled bistable systems. G
bal coupling has been widely recognized as an import
factor which influences and even determines spatiotemp
dynamics in extended systems of different nature@28–
30,41,44,46,47#. In particular, accelerated front motion ha
been found in electrochemical systems@48#. One of the main
findings of our analysis reveals that there are regimes wh
the type of feedback by the global constraint is indeterm
nate, and both accelerated and decelerated front propag
driving the system to different final states becomes poss
for close-by initial values of the front position and the exte
nal control parameters.
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APPENDIX

Let us study the stability of a stationary kink„a0(x),u0…

in the presence of a global constraint. Linearization of E
~5! and ~6! with respect to small perturbationseztda(x)
5a(x,t)2a0(x), eztdu5u(t)2u0 yields

zda5ĤNda1kdu, ĤN[D1F~x!, F~x![
] f

]a U
a0 ,u0

,

~A1!
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ezdu52~11v!du1v^da&. ~A2!

The stationary solution is stable if Rez,0 for all eigenval-
uesz.

We denote the eigenfunctions and eigenvalues of the s
adjoint operatorĤN by C i(x) and l i , respectively. They
correspond to the voltage-driven caseu5const. The first
~ground-state! eigenmodeC1 is strictly positive and corre-
sponds to a shift of the kink wall. For an infinite syste
(L5`) it is given by the Goldstone modeC15da0 /dx,
and it follows from translation invariance thatl150. For
finite-size systemsl1 becomes positive due to the attracti
action of the boundaries on the kink wall, but all other
genvalues remain negative@2,31#: l1.0, l i,0 for i .1.
However, the value ofl1 decreases exponentially if the rat
L/W increases and therefore in sufficiently large systems
stationary front has quasineutral stability. In order to stu
the front stability in the presence of a global constraint
expand the eigenmodeda(x) in the basis$C i%:

da~x!5(
m

^daCm&Cm . ~A3!

From Eq.~A1! we obtain the coefficients of the expansio
~A3!. Substituting Eq.~A3! into Eq. ~A2! results in the fol-
lowing characteristic equation:

F~z!511v1ez2vk(
m

^Cm&2

z2lm
50, ~A4!

which determines the complex eigenvaluesz of the linear-
ized system~A1!, ~A2!.

The differential conductivity of the kink state

sd[L
d^ j „a~u!,u…&

du
5LS K ] j

]uL 1 K ] j

]a

da

duL D ~A5!

is connected with the eigenvaluesl i and eigenfunctionsC i
by
c-

c

o
uc
lf-

-

e
y
e

sd5r 21S 11k(
m

^Cm&2

lm
D . ~A6!

Due tol1!ul i u and u^C1&u@u^C i&u for i .1 we neglect all
terms except for the first one in the sums in Eqs.~A4! and
~A6!. Then the characteristic equation~A4! takes the form

ez21z~11v2el1!2l1~11vs̃d!50, s̃d[sdr .
~A7!

From Eq.~A7! we get the following stability criteria:

211el1,v,2s̃d
21 if e.0, ~A8!

2s̃d
21,v,211el1 if e,0. ~A9!

According to Eq.~A6! s̃d'k/l1 which means that the dif-
ferential conductance of a stationary kink is positive a
large: s̃d@1. Therefore neither Eq.~A8! nor Eq. ~A9! are
met for v.0. For v.0, e.0 the fixed point is a saddle
point, for v.0, e,0 it is an unstable focus or unstab
node. Sinces̃d@1 we also conclude that the criterion~A9! is
never satisfied forv,0: for v,0, e,0 the fixed point is a
saddle point or, in the narrow interval2s̃d

21,v,0, an un-
stable node. Stabilization becomes possible only in the c
~A8! if e.0 andv,0.

For smalle andL@W ~i.e., l1 , s̃d
21→0) this criterion

takes the approximate form21,v,0 which coincides
with the condition of negative slope of the null isocline~22!
of the global constraint~Fig. 7!. The upper and lower bound
of condition~A8! correspond to saddle-node and Hopf bifu
cations, respectively. It should be noted that in the casev
,0 the load resistanceR is negative, and in order to kee
e[RC/ta positive a negative capacitanceC,0 is required.
This is generally necessary to eliminate oscillations indu
by a negative external load~see@11,31,40#!.
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